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Abstract The additive main effects multiplicative inter- 
action model is frequently used in the analysis of multi- 
location trials. In the analysis of such data it is of interest 
to decide how many of the multiplicative interaction 
terms are significant. Several tests for this task are 
available, all of which assume that errors are normally 
distributed with a common variance. This paper investi- 
gates the robustness of several tests (Gollob, F~m, F~n2, 
FR) to departures from these assumptions. It is con- 
cluded that, because of its better robustness, the FR test 
is preferable. If the other tests are to be used, preliminary 
tests for the validity of assumptions should be per- 
formed. 
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Introduction 

Genotype x environment interaction in crop cultivar 
trials is often analysed using the additive main effects 
multiplicative interaction (AMMI) model (Gauch 1988, 
1992), which was originally developed in the field of 
social and physical sciences (Gollob 1968; Mandel 1969, 
1971). The appropriate number of muliplicative interac- 
tion terms to be retained may be determined either by 
cross-validation (Gauch 1988; Gauch and Zobel 1988; 
Piepho 1994) or by significance tests. Recently, Cornel- 
ius (1993) reviewed tests of multiplicative terms for data 
with replication and investigated their empirical Type-I 
error and power via Monte Carlo simulation. He 
showed the Fsm and FGt~2 tests (introduced for AMMI 
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analysis by Cornelius et al. 1992) to give satisfactory 
empirical Type-I errors, while the test by Gollob (1968) 
was too liberal when the true model contained no 
multiplicative terms. For the FGu tests and Gollob's test 
it is assumed that the errors are independently normally 
distributed with a common variance. While in the case of 
proper randomization, the independence assumption is 
generally justified, errors may, at times, depart from the 
normality assumption. Moreover, it is often observed 
that the error variances are heterogeneous among envi- 
ronments. The purpose of the present paper is to investi- 
gate, via Monte Carlo simulation, the robustness of 
Gollob's test, the FGm and FGu 2 tests, and the F R test, to 
departures from the assumptions of normality and ho- 
mogeneity of error variances. 

Theory 

The AMMI  model for c cultivars and e environments may be written 
a s  

gij  = ]A -~'c i -y~j  -~- EkOkO~ikfljk -~- ~ij (k = 1 t o  p) 

where Yii is the mean yield of the ith cuttivar in the j th  environment, # 
is the grand mean, z i and 6j are main effects of the ith cultivar a n d j t h  
environment, eij is the random error of the mean of the ith cultivar in 
j t h  environment, p _< min(c - 1, e - 1). Y, kOk~ikflj k is taken to be the 
appropriate multiplicative model for genotype x environment inter- 
action satisfying the constraints 0~ > 02 > "" > Op > O, Eie2k = 5Zf132k 
= 1, and ~i(Xik~ik, = 2 j f l j k f l j k t = O .  The multiplicative parameters 
are estimated by singular value decomposition (SVD) of the matrix 
of residuals remaining after fitting the main effects. For  details 
regarding the estimation of model parameters see, e.g., Cornelius 
(1993). 

The error e~j is the mean of errors e~j s of replications within an 
environment, i.e., eli = Ese~js/r, where r is the number  of replications 
per environement. Usually, it is assumed that  eijs are N(0, ~r2), where 
~z 2 is the variance of a cell mean. In this paper we will drop the 
normality assumption and investigate several nonnormal  distribu- 
tions for eij s. Also, we allow for differences in environmental error 
variances. In this case e~j is distributed with zero mean and variance 
2 where cr ? is the variance of a cell mean in t h c j t h  environment 

j~  j . . . .  
The number  of multlphcatlve terms appropriate for a given data 

set may be determined by a test of significance. The tests investigated 
2 2 by Cornelius (1993) are based on the statistic tk/s , where t k is an 
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estimate of the singular value O k, obtained by SVD, and s 2 is the 
pooled error mean square ( f  degrees of freedom = df) on a cell mean 
basis, i.e., the residual ANOVA mean square, divided by the number  
of replications. Three approximations to the null distribution 
(Ho:0 k = 0) of  t2/s 2 are as follows: 

(I) 
(1) tZ/s 2 is distributed as F with (e + c -  1 -  2/<) and f degrees of (II) 
freedom (Gollob 1968). (III) 
(2) FGH1 = gtZ/hlfs 2 is distributed as F with h i  and 9 d f ,  where (IV) 
hl=2vluffvz,  9 = 2 + 2  ( f - 2 )  vffv2, v l = u Z ~ + u Z + ( f - 4 )  Ul, and (V) 
v 2 = ( f - 2 )  u22 + 2u 2 u 1 and u 2 are computed by approximations (VI) 
given by Cornelius (1980) for the expectation and standard deviation (VII) 
of the largest eigenvalue of a Wishart  matrix of dimension min (c - 1, (VIII) 
e - 1) - k + 1 and d f  max (c - 1, e - 1) - k + 1 (Cornelius 1993). (IX) 
()3 FGHZ--k/1-- t2u s2 is distributed as F with h 2 and f df, where (X) 
h 2 = 2u~/u 2 (Cornelius 1993). (XI) 

(XlI) 
Cornelius (1993) suggested two simulation tests based on the (XIII) 

statistics Faro and FGu 2. These differ from the tests described under (XIV) 
(2) and (3) in that  u I and u 2 are obtained by Monte  Carlo method. (XV) 
These tests are expected to behave very similarly to the FGm and (XVI) 
FGm-tests based on tabular values. Because of this similarity and 
because of the high computational workload involved, these simula- 
tion tests are not  considered here. 

Another test may be performed using the residual sum of squares 
after fitting q multiplicative interaction terms (Cornelius, personal 
communication; also see Cornelius et al. 1992, who described a 
modified version of the F g test applicable to the shifted multiplicative 
model). Under  the null hypothesis that  there are no more than q 
terms, the residual sum of squares is approximately a chi-square 
variable. Therefore the F-statistic 

FR = [Y'IYT(Ylj - fig.--Y.j+ f;..)2 -- k~_ l t2J/ f2  s2 

Table 1 Description of distributions and error variances used in 
simulation 

2 [Var (eij) = 4aY] No. Distribution aj 

Normal  1 
Normal  0.1 (j - 5) + 1 
Normal  0.2 (j - 5) + 1 
Normal  0.9 for j  < e; 
Normal  0.7 for j  < e; 
Uniform 1 
Cauchy 1 
Exponential 1 
Gamma (0.5) a 1 
0.9N(O, 8/9)+O.1N(0,2) b 1 
0.9N(O, 5/9)+O.1N(0,5) b 1 
0.9 N (0, 1) +0 .1N(1 ,  1) b 1 
0.9 N (0, 1) +0.1N(5,  1) b 1 
Gamma (2)" 1 
0.95 N (0,10/19) + 0.05 N (0, 10) 8 1 
0.99 N(0, 1) +0.01 N(10, 1) b 1 

1.8 for j  = e 
3.4 for j  = e 

a Gamma (a) = gamma distribution with parameter a (see Johnson 
and Kotz 1971) 
b wlN(u, aZ)+waN(#,a~)= Mixture of two normal distributions 
with weights w 1 and w: (Cohen 1967) 

(Distributions XII, XIII, and XVI), which mimmick the problem of 
outliers, this relation holds only for the mixture components, not for 
the mixture itself. AMMI-type interaction, subject to the usual con- 
straints on cqk and fljk, was generated using the ORPOL function of 
SAS/IML. 

is approximately distributed as F with f2 = (e - 1 - q) (c - 1 - q) and 
f degrees of freedom (Gollob 1968; Goodman  and Haberman 1990). 
When the F R test is significant, this suggests that  there is at least one 
more multipticative term in addition to the q terms already fitted. 
Thus, the F R test may be regarded as a test for significance of the 
(q + 1)-th multiplicative term. It has some similarity to lack-of-fit tests 
in linear regression. Note that  for q = 0, i.e., when no multiplicative 
term is fitted, the F R test is equivalent to the ANOVA F-test for the 
entire interaction, which is an exact test. Also note that the numerator  
dfof the FR-test is equal to the total interaction df, minus Gollob's df  
for the first q terms. 

Simulation study 

Methods 

In order to investigate the robustness of the F~u tests and Gollob's 
test to non-normali ty and heteroscedasticity of errors, tables of c = 20 
genotypes and e = 9 environments with r = 4 replications were gener- 
ated using the SAS procedure IML (SAS, Inc., Cary, N.C.). The 
dimension of the table was chosen to be comparable to simulations by 
Cornelius (1993), who generated tables for c = 9 an e = 20. The 
number  of genotypes and environments was reversed, because in 
many cultivar evaluation trials c >> e (Piepho 1992). It is noted that  the 
results given in Cornelius (1993) are also valid for c = 9 and e = 20. 

The simulated data correspond to a completely randomized 
design. The RANNOR, RANUNI,  RANEXP, and R A N G A M  func- 
tions in SAS were used to generate random deviates eij, following, 
respectively, the normal, uniform, exponential, and gamma distribu- 
tion. Random deviates from mixtures of two normal distributions 
(Cohen 1967) were generated by the RANUNI  and the RANNOR 
functions. A description of distributions and error variances used in 
the simulation is given in Table 1. The distributions were scaled so 

2 2 that  cr = Z ja j / e  = Ej Var (eljs)/er = 1, where VAR(~Ij,) denotes the 
variance of eij~. With the scale-contaminated normal distributions 

Results 

Cornelius (1993) did not investigate the F R test. There- 
fore we repeated has Cases 1 to 15 for normally distrib- 
uted errors. The results are shown in Table 2. The FGm 
test is not included because the results were identical to 
those of FGm. A full discussion of results for the F~H 
tests and Gollob's tests is given in Cornelius (1993). In all 
cases the F R tests had an empirical Type-I error rate 
close to, or below, the expected 0.05 for the 0 k values 
equal to zero. In this respect it was very similar to the 
FGu tests. In most cases its power to detect the non-null 
Ok terms was lower than for the FG~ tests. Only in Case 8 
and Case 14, in which all non-null O k had the same value, 
and in Case 15 was the F g test more powerful than the 
FGu tests. 

Results of simulation for all Ok = 0 (Case 1) and the 
error distributions shown in Table 1, are displayed in 
Table 3 (except distribution I, which is shown in 
Table 2). For normally distributed errors (Distribution 
I), Gollob's test was very liberal for the first term (Type-I 
error of 66%), while the F ~ m  and F R tests were close to 
the nominal error rate of 5% (see Case 1 in Table 2). The 
results for Gollob's test and the Fau 2 test coincide with 
those by Cornelius(1993), who did not investigate the F R 
test. In the other 15 cases (Distributions II to V: hetero- 
scedasticity; Distributions VI to XVI: non-normal error 
distributions) the empirical Type-I error exceeded the 
nominal rate of Gollob's test and the FGH 2 test, while the 
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Table 2 Percentage of rejections of null hypotheses in 1000 simulated tests (~ = 0.05) ofmultiplicative interaction terms in 20 cultivars by nine 
environments tables with four replications and 13 sets of true 0 k values (Case 1 to Case 15 in Cornelius 1993). Normal distribution of errors 
(Distribution I) 

Test Multiplicative term (Ok) no. 

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 

Case 1 Case 6 Case 11 

O k 0 0 0 0 0 0 0 0 10 10 0 0 0 0 0 0 12 10 8 0 0 0 0 0 
Gollob 65.3 16.7 1.5 0.1 0.0 0.0 0.0 0.0 100.0 100.0 43.2 7.1 0.4 0.0 0.0 0.0 100.0 100.0 100.0 32.2 3.2 0.2 0.0 0.0 
FGn 2 6.1 0.2 0.1 0.0 0.0 0.0 0.0 0.0 100.0100.0 4.5 0.2 0.1 0.0 0.0 0.0 100.0100.0 99.3 3.9 0.1 0.0 0.0 0.0 
F R 5.6 0.2 0.1 0.0 0.0 0.0 0.0 0.0 100.0 99.1 4.7 0.4 0.1 0.0 0.0 0.0 100.0100.0 92.3 3.4 0.2 0.0 0.0 0.0 

Case 2 Case 7 Case 12 

O k 5 0 0 0 0 0 0 0 14 6 0 0 0 0 0 0 12 10 8 0 0 0 0 0 
Gollob 96.4 43.8 7.1 0.4 0.1 0.0 0.0 0.0 100.0 99.0 38.2 6.6 0.4 0.0 0.0 0.0 100.0100.0100.0 76.7 11.0 0.3 0.0 0.0 
FGn 2 49.5 2.5 0.1 0.1 0.0 0.0 0.0 0.0 100.0 78.2 3.2 0.1 0.0 0.0 0.0 0.0 100.0 100.0 99.7 30.9 0.9 0.0 0.0 0.0 
F R 31.7 2.2 0:2 0.i 0.0 0.0 0.0 0.0 100.0 53.8 3.5 0.4 0.0 0.0 0.0 0.0 100.0 100.0 97.8 21.0 1.2 0.1 0.0 0.0 

Case 3 Case 8 Case 13 

O k 10 0 0 0 0 0 0 0 5 5 5 0 0 0 0 0 50 20 10 5 0 0 0 0 
Gollob 100.0 53.9 10.4 0.8 0.1 0.0 0.0 0.0 99.9 96.5 63.5 10.9 1.0 0.1 0.0 0.0 100.0 100.0 100.0 93.9 17.8 1.0 0.0 0.0 
FGn2: 100.0 5.0 0.3 0.1 0.0 0.0 0.0 0.0 88.7 44.4 8.6 0.4 0.0 0.0 0.0 0.0 100.0100.0100.0 64.4 1.7 0.0 0.0 0.0 
F R 99.4 4.3 0.4 0.1 0.0 0.0 0.0 0.0 94.3 48.1 7.8 0.6 0.1 0.0 0.0 0.0 100.0100.0100.0 49.1 1.7 0.2 0.0 0.0 

Case 4 Case 9 Case 14 

O k 5 5 0 0 0 0 0 0 12 8 4 0 0 0 0 0 5 5 5 5 5 5 5 5 
Gollob 99.6 82.9 23.8 3.1 0.2 0:0 0.0 0.0 100.0 100.0 82.4 20.0 1.4 0.1 0.0 0.0 100.0100.0 99.9 98.9 88.7 55.6 17.2 1.8 
F~n 2 75.5 20.4 i . i  0.1 0.0 0.0 0.0 0.0 100.0 99.5 25.7 0.8 0.1 0.0 0.0 0.0 100.0 98.4 89.7 66.5 37.2 17.9 4.8 1.8 
F R 72.5 15.5 1.3 0.1 0.0 0.0 0.0 0:0 100.0 98.2 18.3 1.5 0.2 0.0 0.0 0.0 100.0100.0 99.9 98.2 83.9 50.7 14.8 1.8 

Case 5 Case 10 Case 15 

o k 10 5 0 0 0 0 0 0 10 10 5 0 0 0 0 0 14 6 4 4 2 0 0 0 
Gollob 100.0 95.0 32.8 5.1 0.3 0.0 0.0 0.0 100.0 100.0 92:8 2&3 1.7 0.2 0.0 0.0 100.0 100.0 92.7 49.5 6.2 0.3 0.0 0.0 
Fc//2 100.0 49.9 2.0 0.2 0.0 0.0 0.0 0.0 100.0100.0 545 1.8 0:1 0.0 0.0 0.0 100.0 91.4 38.8 6.1 0.1 0.0 0.0 0.0 
F R 100.0 33.6 2.2 0.3 0.0 0.0 0.0 0.0 100.0 99.9 34.3 2.2 0.2 0.0 0.0 0.0 100.0 96.7 49.5 8.4 0.4 0.1 0.0 0.0 

F R test  was  ve ry  robus t .  T h e  m o s t  e x t r e m e  e r r o r  ra te  for  
F R (10.8% for first  t e rm)  o c c u r r e d  for  D i s t r i b u t i o n  V. 

S i m u l a t i o n  resul ts  for  the  case  0j  = 14, 02 = 6 ,  
03 = 04 = 4, a n d  05 = 2 ( =  Case  15; chosen  for  s i m l a r i t y  
to  the  rea l  d a t a  set a n a l y s e d  b y  C o r n e l i u s  1993) a re  
s u m m a r i z e d  in  T a b l e  4. U n d e r  n o r m a l i t y  a n d  h o m o -  
scedas t i c i ty  ( D i s t r i b u t i o n  I) G o l l o b ' s  test  for  m u t t i p l i c a -  
t ive t e rms  two  to five was  s u p e r i o r  in power ,  fo l lowed  b y  
the F R test  (see Case  15 in T a b l e  2). G o l l o b ' s  tes t  was  a lso  
m o s t  p o w e r f u l  in  al l  o t h e r  cases  ( D i s t r i b u t i o n s  I I  to  
XVI).  U n d e r  h e t e r o s c e d a s t i c i t y  ( D i s t r i b u t i o n s  I I  to  V), 
w i th  e r ro r s  f rom a u n i f o r m  d i s t r i b u t i o n  ( D i s t r i b u t i o n  
VI), a n d  wi th  e r ro r s  f rom a C a u c h y  d i s t r i b u t i o n  (Dis-  
t r i b u t i o n  VII) ,  the  F~n  tes ts  h a d  be t t e r  p o w e r  t h a n  the 
F R test ,  whi le  the  FGH tests  were  m o r e  c o n s e r v a t i v e  wi th  
the  o t h e r  n o n - n o r m a l  d i s t r i b u t i o n s  ( D i s t r i b u t i o n s  V I I I  
to  XVI).  T h e  p o w e r  to  de tec t  the  fifth m u l t i p l i c a t i v e  t e r m  
was  low for al l  tests  a n d  cases,  whi le  the  e m p i r i c a l  e r r o r  
r a t e s  for  06 = 07 --  08 = 0 were  wi th in  a c c e p t a b l e  l imits .  
T h e  on ly  e x c e p t i o n  was  G o l t o b ' s  test  w i th  D i s t r i b u t i o n  
VI, were  the  nul l  h y p o t h e s i s  for  the  s ix th  t e r m  was  falsely 
re jec ted  in 133 of  the  t 000 s i m u l a t i o n  runs.  

T o  fu r the r  inves t iga te  h o w  p o w e r  a n d  rob us tne s s  
d e p e n d  on  the  n u m b e r  of  n o n - n u l l  t rue  Ok values ,  
the s imu la t ion  was  run  for e r rors  d i s t r ibu ted  as a mix tu re  
o f  two  n o r m a l  p o p u l a t i o n s ,  i.e., as 0 .99N ( 0 , 1 ) +  
0 .0i  N(10,  1) ( D i s t r i b u t i o n  X V I  in T a b l e  1). T h e  resul ts  
for  cases  (01, 02, 03) equa l  to  (10, 0, 0) (Case  3), (10, 10, 0) 
(Case  6), a n d  (10, 10, 5) (Case  10) a re  s h o w n  in T a b l e  5. I n  
Case  3, G o l l o b ' s  test  a n d  the  F~n  tests  h a d  a r isk  of  
66 .6% a n d  14.1%, respec t ive ly ,  of  falsely dec l a r i ng  the  
first  ze ro  t e rm  (02) s ignif icant ,  whi le  the  r i sk  wi th  F R was  
on ly  3 .1%.  I n  Case  6, the  T y p e - I  e r r o r  ra tes  for  the  first  
ze ro  t e r m  (03)were  49 .2% a n d  9 %  for  G o l l o b ' s  test  a n d  
the  F a n  tests,  w he re a s  in Case  10, the  ra tes  for  the  first  
ze ro  t e r m  (04) were  i 6 . 6 %  a n d  1.4%, respect ive ly .  So 
whi le  these  two  tests  were  very  l ibe ra l  w i th  r e g a r d  to  
the  first  m u l t i p l i c a t i v e  te rm,  they  t e n d e d  to  be  less 
l i be ra l  for  t e rms  two  a n d  three.  In  Cases  6 a n d  10 
the  F R tes t  was  conse rva t ive ,  g iv ing  e r r o r  ra tes  for  the  
first  ze ro  t e rm  of  2 .7% a n d  0 .3%,  respect ive ly .  In  al l  
t h ree  cases  the  F R test  h a d  less p o w e r  t h a n  G o l l o b ' s  tes t  
a n d  the  F a l l  tests  to  de tec t  the  n o n - z e r o  m u l t i p l i c a t i v e  
terms.  
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Table 3 Percentage rejection of null hypotheses in 1000 simulated tests (a = 0.05) of multiplicative interaction terms in 20 cultivars by nine 
environments tables with four replications. All true singular values equal to zero (Case 1). Distributions II to XVI 

Test Multiplicative term (Ok) no. 

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 

Distribution II a Distribution VII Distribution XII 

Gollob 
FGIt2 
F R 

Gollob 
FGtI2 
FR 

Gollob 
F~fI2 
FR 

Gollob 
Fort2 
FR 

Gollob 
FGH2 
FR 

73.1 20.9 1.9 0.1 0.0 0.0 0.0 0.0 
10.2 0.6 0.1 0.0 0.0 0.0 0.0 0.0 

5.9 0.3 0.1 0.0 0.0 0.0 0.0 0.0 

Distribution III 

84.8 33.1 3.1 0.0 0.0 0.0 0.0 0.0 
25.9 1.5 0.0 0.0 0.0 0.0 0.0 0.0 

6.7 0.3 0.1 0.0 0.0 0.0 0.0 0.0 

99.4 27.4 0.7 0.0 0.0 0.0 0.0 0.0 
94.2 6.5 0.0 0.0 0.0 0.0 0.0 0.0 

1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Distribution VIII 

73.7 20.0 2.0 0.0 0.0 0.0 0.0 0.0 
10.9 0.2 0.0 0.0 0.0 0.0 0.0 0.0 

5.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

65.2 16.5 1.6 0.1 0.0 0.0 0.0 0.0 
6.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 
5.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 

Distribution XIII 

68.3 17.2 1.6 0.0 0.0 0.0 0.0 0.0 
7.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 
5.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

Distribution IV Distribution IX Distribution XIV 

77.6 19.6 1.1 0.0 0.0 0.0 0.0 0.0 
14.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 
4.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

74.1 t.6 1.4 0.1 0.0 0.0 0.0 0.0 
15.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 

6.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

70.5 21.2 2.2 0.0 0.0 0.0 0.0 0.0 
7.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 
6.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 

Distribution V Distribution X Distribution XV 

93.8 3.7 0.2 0.0 0.0 0.0 0.0 0.0 
63.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
10.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

66.3 17.8 1.7 0.1 0.1 0.0 0.0 0.0 
6.2 0.2 0.1 0.0 0.0 0.0 0.0 0.0 
5.1 0.2 0.1 0.0 0.0 0.0 0.0 0.0 

79.4 20.0 1.6 0.0 0.0 0.0 0.0 0.0 
16.1 0.4 0.0 0.0 0.0 0.0 0.0 0.0 
4.6 0.2 0.0 0.0 0.0 0.0 0.0 0.0 

Distribution VI Distribution XI Distribution XVI 

73.6 18.7 1.8 0.1 0.0 0.0 0.0 0.0 
10.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 
4.9 0.3 0.0 0.0 0.0 0.0 0.0 0.0 

63.5 16.4 2.0 0.2 0.0 0.0 0.0 0.0 
4.6 0.3 0.0 0.0 0.0 0.0 0.0 0.0 
4.8 0.6 0.1 0,0 0.0 0.0 0.0 0.0 

86.7 26.1 1.5 0.0 0.0 0.0 0.0 0.0 
22.7 0.5 0.1 0.0 0.0 0.0 0.0 0.0 

5.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

a See Table 1 for description of Distributions II to XVI. Note that  Distribution I is covered by Table 2 

Table 4 Percentage rejection of null hypotheses in 1000 simulated tests (~ = 0.05) of multiplicative interaction terms in 20 cultivars by nine 
environments tables with four replications. 01 = 14, 02 = 6, 0 a = 04 = 4, 05 = 2 (Cae 15). Distributions II to XVII 

Test Multiplicative term (Ok) no. 

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 

Distribution I1 a Distribution VII Distribution XI1 

Gollob 100.0 99.8 83.3 28.8 
FGm 100.0 87.9 25.5 2.2 
F R 100.0 87.1 25.7 2.6 

Distribution III 

Gollob 100.0 100.0 96.8 59.2 10.3 
Fon 2 100.0 100.0 66.0 14.5 0.5 
F R 100.0 100.0 62.8 9.8 0.5 

Gollob 
FGH2 
FR 

2.4 0.0 0.0 0.0 99.5 27.8 0.5 
0.1 0.0 0.0 0.0 94.8 6.5 0.0 
0.2 0.0 0.0 0.0 1.7 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 100.0 99.8 89.7 43.7 4.8 0.1 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 100.0 88.0 33.0 5.2 0.1 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 100.0 92.4 43.1 6.1 0.3 0.0 0.0 0.0 

Distribution VIII Distribution XIII 

0.3 0.0 0.0 100,0 99.9 92.5 47.5 7.0 0.2 0.0 0.0 100.0 85.8 36.7 4.9 0.3 0.0 0.0 0.0 
0.0 0.0 0.0 100,0 91.8 42.3 6.3 0.5 0.0 0.0 0.0 98.5 22.7 2.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 100.0 94.9 49.0 7.6 0.3 0.0 0.0 0.0 95.9 25.1 3.3 0.2 0.0 0.0 0.0 0.0 

Distribution IV Distribution IX Distribution XIV 

100.0 100.0 95.8 51.8 
100.0 100.0 56.3 10.4 
100.0 100.0 54.6 7.6 

5.5 0.1 0.0 0.0 100.0 100.0 100.0 99.9 70.1 7.1 1.0 0.0 100.0 95.9 50.0 8.4 0.6 0.0 0.0 0.0 
0.3 0.0 0.0 0.0 100.0 100.0 100.0 98.7 36.9 0.9 0.0 0.0 100.0 42.9 4.0 0.3 0.0 0.0 0.0 0.0 
0.4 0.0 0.0 0.0 100.0 100.0 100.0 96.3 25.4 0.9 0.0 0.0 100.0 42.0 5.3 0.2 0.0 0.0 0.0 0.0 

Distribution V Distribution X Distribution XV 

Gollob 100.0 100.0 80.3 23.1 
Foa, 2 100.0 93.7 25.5 2.3 
FR 100.0 85.6 12.9 0.7 

Gollob 
FGH2 
F R 

0.4 0.0 0.0 0.0 100.0 100.0 93.1 48.2 6.0 0.3 0.0 0.0 100.0 99.9 92.1 51.0 7.2 0.1 0.0 0.0 
0.0 0.0 0.0 0.0 100.0 91.3 39.7 6.1 0.0 0.0 0.0 0.0 100.0 92.2 43.8 6.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 100.0 96.6 49.4 7.8 0.4 0.0 0.0 0.0 100.0 95.0 47.2 7.7 0.0 0.0 0.0 0.0 

Distribution VI Distribution XI Distribution XVI 

100.0 100.0 100.0 100.0 100.0 13.3 0.6 0.0 100.0 99.9 92.9 46.9 7.7 0.0 0.0 0.0 100.9 97.0 62.6 14.5 0.7 0.0 0.0 0.0 
100.0 100.0 100.0 100.0 97.9 2.3 0.1 0.0 t00.0 91.5 41.1 5.9 0.2 0.0 0.0 0.0 99.9 60.0 9.7 1.0 0.0 0.0 0.0 0.0 
100.0 100.0 100.0 100.0 92.0 3.1 0.3 0.0 100.0 95.8 47.8 7.6 0.4 0.0 0.0 0.0 100.0 52.4 8.2 0.8 0.0 0.0 0.0 0.0 
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Table5 Percentage of rejections of null hypotheses in 1000 
simulated tests (e = 0.05) of multiplicative interactions terms in 20 
cultivars by nine environments tables with four replications and three 
sets of true O k values (Cases 3, 6, and 10 in Cornelius 1993). Errors 
distributed as the normal mixture 0.99 N(0,1) + 0.01 N(10,1) (Dis- 
tribution XVI) 

Test Multiplicative term (Ok) no. 

1 2 3 4 5 6 7 8 

Case 3 

Table 6 Percentage of selections of multiplicative interaction terms 
in 20 cultivars by nine environments tables with four replications 
(three for model building, one for validation) in 1000 simulated cross 
validations (ten runs per cross validation) 

Test Multiplicative term (Ok) no. 

1 2 3 4 5 6 7 8 

Case 1 

.O k 0 0 0 0 0 0 0 0 

O k 1.0 0.0 0.0 0.0 0.0 0.0 0.0 
Gollob 99.9 66.6 12.0 0.5 0.0 0.0 0.0 
FGu 2 94.0 14.2 0.3 0.0 0.0 0.0 0.0 
F R 71.3 3.1 0.0 0.0 0.0 0.0 0.0 0.0 

Case 6 

0.0 I 4.8 1.5 0.3 0.2 0.2 0.1 0.1 0.1 
0.0 IIIa 6.4 1.5 0.4 0.2 0.1 0.1 0.1 0.1 
0.0 V 8.9 0.2 0.2 0.1 0.1 0.0 0.0 0.0 

VII 4.3 2.5 1.6 1.1 1.0 1.0 0.9 0.7 
XIV 3.8 1.0 0.4 0.3 0.2 0.1 0.0 0.0 
XV 2.8 0.6 0.2 0.2 0.1 0.1 0.1 0.1 
XVI 3.0 1.1 0.5 0.1 0.1 0.0 0.0 0.0 

O k 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 
Gollob 100.0 99.5 49.2 6.7 0.1 0.0 0.0 0.0 
FGU 2 99.1 82.7 9.0 0.4 0.0 0.0 0.0 0.0 
F R 98.1 53.0 2.7 0.1 0.0 0.0 0.0 0.0 

Case 10 

O k 1.0 1.0 0.5 0.0 0.0 0.0 0.0 0.0 
Gollob 100.0 99.6 70.9 16.6 0.9 0.0 0.0 0.0 
Fall  2 99.2 85.1 20.0 1.4 0.1 0.0 0.0 0.0 
F R 99.5 71.0 10.3 0.3 0.0 0.0 0.0 0.0 

Case 15 

O k 14 6 4 4 2 0 0 0 

I 99.5 40.9 18.4 9.2 4.5 2.3 1.0 0.7 
III 99.5 39.8 17.6 10.1 6.3 3.1 1.0 0.5 
V 94.6 46.0 25.0 12.7 4.6 2.4 1.2 0.6 
VII 4.4 2.5 1.7 1.3 1.0 0.9 0.6 0.5 
XIV 99.0 41.6 19.8 11.0 4.6 2.2 1.2 0.3 
XV 99.2 37.6 18.4 10.8 6.0 3.0 1.6 0.8 
XVI 80.7 17.2 8.5 4.4 2.3 1.2 0.3 0.2 

The robustness of cross validation (Gauch and Zobel 
1988) was investigated for Cases 1 and 15 and for 
Distributions I, III, V, VII, XIV, XV, and XVI. Three of 
four replications were used for model building, while 
one replicate was retained for validation. Cross valida- 
tion was based on the root mean squared predictive 
difference (RMSPD) between the model and validation 
data (Gauch and Zobel 1988), averaged across ten ran- 
dom data splittings. The model with the smallest 
RMSPD was taken to be the best predictive model. 
Simulation results are presented in Table6. The 
results suggest that cross validation is robust to non- 
normality and to heteroscedasticity, when in fact there is 
no interaction (Case 1). As for Case 15, cross validation 
tended to detect less terms than the significance tests. 
Heteroscedasticity (Distributions III and V) had no 
serious effect on model selection, while the non-normal 
distributions decreased power compared to the normal 
case. 

Discussion 

The F R test is simple because it is based on a straight- 
forward F-ratio (no tables or computation of constants 
needed) and the degrees of freedom are easily assigned 
following Gollob's rules. Furthermore, the F R test for 
the first multiplicative term is very robust to non- 
normality and heteroscedasticity, which is not true of 
the FGu tests. This suggests that it may be worthwhile to 
generally use the FR test in place of the FGH tests (and 

a See Table 1 for description of Distributions I, III, V, VII, XIV, XV, 
and XVI 

Gollob's test). If the Fan tests are to be used, preliminary 
tests for the homogeneity of variances and for normality 
are in order. The simulation results indicate that the 
robustness of the F R test must often be paid for by a loss 
in power compared to the FGu tests. It is noted, however, 
that with an increasing number of 'true' non-zero terms, 
the risk of falsely declaring a term significant decreased 
to acceptable limits with any of the tests investigated, 
even if the assumptions of normality and homoscedas- 
ticity are violated. 

The simulations presented in this paper were done 
only for 9 x 20 tables. It is conjectured (and confirmed 
by spot checks), however, that results for tables of other 
dimension are similar with regard to robustness. This 
conjecture needs to be checked by more extensive simu- 
lations in the future. 

A simulation test similar to the one given by Cornel- 
ius (1993) could probably be devised under hetero- 
scedasticity assumptions, though the development 
would not be straight forward (Cornelius, personal com- 
munication). Also, such a test would probably still be 
sensitive to departures from normality. 

In this paper, we were mainly concerned with tests for 
determining how many of the multiplicative terms O k are 
non-null. As pointed out by Cornelius (1993), this is not 
the same issue as finding the optimal number of terms 
for a predictive model, which is usually done by cross 
validation. Often, a good predictive model has fewer 
terms than are judged significant by a statistical test. 
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Cornelius (1993) has demonstrated, however, that in 
some cases choosing the number of significant terms 
may be a better model-building strategy for prediction. 
Our preliminary simulations (Table 6) indicate that, 
although cross validation is non-parameteric in that it is 
not based on the normality assumption, the expected 
number of selected terms is not necessarily independent 
of the error distribution. A thorough comparison of the 
two model-building strategies would be worthwhile, but 
is beyond the scope of this paper. Because of workload 
limitations, we have used only ten iterations per cross 
validation. For an in-depth analysis, the number of 
iterations would probably have to be increased. Besides 
the number of selected multiplicative terms, a useful 
criterion would the interaction mean squared error 
(IMSE) suggested by Cornelius (1993). 
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