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Abstract The additive main effects multiplicative inter-
action model is frequently used in the analysis of multi-
location trials. In the analysis of such data it is of interest
to decide how many of the multiplicative interaction
terms are significant. Several tests for this task are
available, all of which assume that errors are normally
distributed with a common variance. This paper investi-
gates the robustness of several tests (Gollob, F g5, Fghas
Fg) to departures from these assumptions. It is con-
cluded that, because of its better robustness, the Fy test
is preferable. If the other tests are to be used, preliminary
tests for the validity of assumptions should be per-
formed.

Key words Genotype x environment interaction
Two-way classification + Additive main effects
multiplicative interaction (AMMI) * Cross
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Introduction

Genotype x environment interaction in crop cultivar
trials is often analysed using the additive main effects
multiplicative interaction (AMMI) model (Gauch 1988,
1992), which was originally developed in the field of
social and physical sciences (Gollob 1968; Mandel 1969,
1971). The appropriate number of muliplicative interac-
tion terms to be retained may be determined either by
cross-validation (Gauch 1988; Gauch and Zobel 1988;
Piepho 1994) or by significance tests. Recently, Cornel-
ius (1993) reviewed tests of multiplicative terms for data
with replication and investigated their empirical Type-1
error and power via Monte Carlo simulation. He
showed the Fy, and F gy, tests (introduced for AMMI
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analysis by Cornelius et al. 1992) to give satisfactory
empirical Type-I errors, while the test by Gollob (1968)
was too liberal when the true model contained no
multiplicative terms. For the F,; tests and Gollob’s test
it is assumed that the errors are independently normally
distributed with a common variance. While in the case of
proper randomization, the independence assumption is
generally justified, errors may, at times, depart from the
normality assumption. Moreover, it is often observed
that the error variances are heterogeneous among envi-
ronments. The purpose of the present paper is to investi-
gate, via Monte Carlo simulation, the robustness of
Gollob’s test, the F 5y, and F gy, tests, and the Fj, test, to
departures from the assumptions of normality and ho-
mogeneity of error variances.

Theory

The AMMI model for ¢ cultivars and e environments may be written
as

Y =p+1+6+ L 00 By +e; (k=1t0p)

where y;; is the mean yield of the ith cultivar in the jth environment,
is the grand mean, 7; and J, are main effects of the ith cultivar and jth
environment, g;; is the random error of the mean of the ith cultivar in
jth env1ronment p<min{c — 1, e —1). £, 0,0, 5, is taken to be the
appropriate multiplicative model for genotype X environment 1nter-
action satisfying the constraints 6, >0, > - >6,>0, Tk =3, ﬁjk
=1, and X004 =X; ﬁ,kﬁ,k,_o The multlphcatlve parameters
are estlmated by smgular value decomposmon (SVD) of the matrix
of residuals remaining after fitting the main effects. For details
regarding the estimation of model parameters see, e.g., Cornelius
(1993).

The error ¢; is the mean of errors ¢;;, of replications within an
environment, ie. » & = L&/, Where ¢ is ‘the number of rephcatlons
per environement. Usually, it is assumed that g;;s are N(0, ¢ %), where
¢? is the variance of a cell mean. In this paper we will drop the
normality assumption and investigate several nonnormal distribu-
tions for ¢;;. Also, we allow for differences in environmental error
variances. In this case g;; is distributed with zero mean and variance
az where 02 is the variance of a cell mean in the jth environment.

The nurmber of multiplicative terms appropriate for a given data
set may be determined by a test of significance. The tests 1nvest1gated
by Cornelius (1993) are based on the statistic 12/s%, where 1, is an



estimate of the singular value 6,, obtained by SVD, and s* is the
pooled error mean square (f degrees of freedom = df’) on a cell mean
basis, i.e., the residual ANOVA mean square, divided by the number
of rephcatlons Three approximations to the null distribution
(Hy:0,=0) of t; Z/s? are as follows:

(1) t7/s* is distributed as F with (e +¢ — 1 —2k) and f degrees of
freedom (Gollob 1968)

2y Feu —-gtk/hlfs is distributed as F Wlth hy and g df, where
hy=201u1/0;, g =2+2 (f—2) v,/v;, vy =15 +ui +(f—4) u,, and
v, =(f—2) uy +2uj u, and u, are computed by approximations
given by Cornelius (1980) for the expectation and standard deviation
of the largest eigenvalue of a Wishart matrix of dimension min (¢ — 1,
e—1)—k+ 1 and df max (c— 1, e — 1) — k + 1 (Cornelius 1993).

3) FGHZ = tk/u s is dlstnbuted as F with h, and f df, where
h, = 2u?fu3 (Cornelius 1993).

Cornelius (1993) suggested two simulation tests based on the
statistics Fpy and Fy,. These differ from the tests described under
(2) and (3) in that u, and u, are obtained by Monte Carlo method.
These tests are expected to behave very similarly to the Fgp, and
Fgpuy-tests based on tabular values. Because of this similarity and
because of the high computational workload involved, these simula-
tion tests are not considered here.

Another test may be performed using the residual sum of squares
after fitting g multiplicative interaction terms (Cornelius, personal
communication; also see Cornelius et al. 1992, who described a
modified version of the Fp test applicable to the shifted multiplicative
model). Under the null hypothesis that there are no more than ¢
terms, the residual sum of squares is approximately a chi-square
variable. Therefore the F-statistic

q
L e

is approximately distributed as F withf, =(e — 1 —¢q) (c — 1 —¢) and
f degrees of freedom (Gollob 1968; Goodman and Haberman 1990).
When the F, test is significant, this suggests that there is at least one
more multiplicative term in addition to the ¢ terms already fitted.
Thus, the Fj test may be regarded as a test for significance of the
(g + 1)-th multiplicative term. It has some similarity to lack-of-fit tests
in linear regression. Note that for g = 0, i.e., when no multiplicative
term is fitted, the F test is equivalent to the ANOVA F-test for the
entire interaction, which is an exact test. Also note that the numerator
df of the Fg-test is equal to the total interaction df, minus Gollob’s df
for the first g terms.

FR:|:ZiZj(yij —7.;+¥)

Simulation study

Methods

In order to investigate the robustness of the Fy tests and Gollob’s
test to non-normality and heteroscedasticity of errors, tables of ¢ = 20
genotypes and e = 9 environments with r = 4 replications were gener-
ated using the SAS procedure IML (SAS, Inc.,, Cary, N.C.). The
dimension of the table was chosen to be comparable to simulations by
Cornelius (1993), who generated tables for ¢ =9 an e=20. The
number of genotypes and environments was reversed, because in
many cultivar evaluation trials ¢ > e (Piepho 1992). It is noted that the
results given in Cornelius (1993) are also valid for ¢ =9 and e == 20.
The simulated data correspond to a completely randomized
design The RANNOR, RANUNI, RANEXP, and RANGAM func-
tions in SAS were used to generate random dev1ates &y, following,
respectively, the normal, uniform, exponential, and gamma distribu-
tion. Random deviates from mixtures of two normal distributions
(Cohen 1967) were generated by the RANUNI and the RANNOR
functions. A description of distributions and error variances used in
the s1mu1at10n is given in Table 1. The distributions were scaled so
that ¢° =0 e = Z; Var (g;;)/er = 1, where VAR(e;;)) denotes the
variance of &j W1th the scale- contammated normal distributions
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Table 1 Description of distributions and error variances used in
simulation

No. Distribution o7 [Var(e,)=407]

4] Normal 1

(II) Normal 01(G—5+1

(IlT} Normal 02(j—5)+1

(IV) Normal 09forj<e, 18forj=e
(V) Normal 0.7forj<e 34forj=e
(VI) Uniform 1

(VIT) Cauchy

(VIII) Exponential

(IX) Gamma (0.5

(X) O0I9N(0,8/9)+0.1N(0,2)P

1
1
1
XI) 09N(0,5/9)+0.1N(, 5)" 1
(XI) 09N, D+01N(1, 1) 1
(XIID) 09N (@O, 1) +0.1N (5, 1)° 1
(XI1V) Gamma (2)* 1
(XV) 095N(0, 10/19)+005N(0 10)° 1
(XVI) 0.99 N (0,1) +0.01 N(10,1)° 1

* Gamma (a) =
and Kotz 1971)
®w,N(u,6°) + w,N(u,062) = Mixture of two normal distributions
with weights w, and w, (Cohen 1967)

gamma distribution with parameter a (see Johnson

(Distributions XII, XIII, and XVI), which mimmick the problem of
outliers, this relation holds only for the mixture components, not for
the mixture itself. AMMI-type interaction, subject to the usual con-

straints on oy, and f,,, was generated using the ORPOL function of
SAS/IML.

Results

Cornelius (1993) did not investigate the Fy test. There-
fore we repeated has Cases 1 to 15 for normally distrib-
uted errors. The results are shown in Table 2. The F g,
test is not included because the results were identical to
those of Fgy,. A full discussion of results for the Fgy
tests and Gollob’s tests is given in Cornelius (1993). In all
cases the Fg tests had an empirical Type-I error rate
close to, or below, the expected 0.05 for the 6, values
equal to zero. In this respect it was very similar to the
Fp tests. In most cases its power to detect the non-null
8, terms was lower than for the F g, tests. Only in Case 8
and Case 14, in which all non-nuli 6, had the same value,
and in Case 15 was the F test more powerful than the
Fpy tests.

Results of simulation for all 6, =0 (Case 1) and the
error distributions shown in Table 1, are displayed in
Table 3 (except distribution I, which is shown in
Table 2). For normally distributed errors (Distribution
I), Gollob’s test was very liberal for the first term (Type-I
error of 66%), while the F g, and Fj tests were close to
the nominal error rate of 5% (see Case 1 in Table 2). The
results for Gollob’s test and the Fy, test coincide with
those by Cornelius(1993), who did not investigate the Fp,
test. In the other 15 cases (Distributions II to V: hetero-
scedasticity; Distributions VI to XVI: non-normal error
distributions) the empirical Type-1 error exceeded the
nominal rate of Gollob’s test and the Fy,, test, while the
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Table 2 Percentage of rejections of null hypotheses in 1 000 simulated tests (« = 0.05) of multiplicative interaction terms in 20 cultivars by nine
environments tables with four replications and 13 sets of true 6, values (Case 1 to Case 15 in Cornelius 1993). Normal distribution of errors

(Distribution I)

Test Multiplicative term (6,) no.
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Case 1 Case 6 Case 11
O 0 60 0 0 00 0 0 10 10 0 0 0 0 0 0 12 10 8 0 0 0 0 0
Gollob 653 167 1.5 0.1 0000 00 0.0 100.01000 432 7.1 04 00 00 0.0 100010001000 322 32 02 00 00
Feur 61 02 01 0.0 0000 00 0.0 10001000 45 02 01 00 0.0 00 10001000 993 39 0.1 00 00 00
Fr 56 02 01 00 0000 00 00 1000 99.1 47 04 01 00 00 00 100.0100.0 923 34 02 00 00 00
Case 2 Case 7 Case 12
6 5 0 0 0 0 0 0 0 14 6 0 0 0 0 0 0 12 10 8 o 0 0 0 0
Gollob 964 438 71 04 0100 00 00 1000 99.0 382 66 04 0.0 00 00 100.0100.01000 767 11.0 03 0.0 0.0
Foma 495 25 01 01 0000 00 00 1000 782 32 01 00 00 00 0.0 100.01000 997 309 09 00 00 00
Fp 317 22 02 01 0000 00 00 1000 53.8 35 04 00 60 00 0.0 10001000 978 210 12 01 00 00
Case 3 Case 8 Case 13
O 10 0 0 0 00 0 0 5 5 50 0 06 0 O 50 20 10 5.0 0 0 0
Gollob 100.0 539 104 0.8 0100 00 00 999 965 635109 1.0 0.1 00 00 1000 100.0100.0 939 178 1.0 00 0.0
Fonz 1000 50 03 01 0000 00 00 887 444 86 04 00 00 00 00 100010001000 644 1.7 00 00 0.0
Fp 994 43 04 01 0000 00 00 943 481 78 0.6 0.1 00 00 0.0 100.0100.0100.0 49.1 1.7 02 00 00
Case 4 Case 9 Case 14
0, 5 5 0 0 00 0 0 12 8 4 0 0 O 0 O 5 5 5 5 5 5 5 5
Gollob  99.6 829238 3.1 0200 00 0.0 10001000 824200 14 0.1 00 00 100.0100.0 999 989 88.7 556 17.2 1.8
Foms 755 204 1.1 01 0000 0.0 00 1000 995 257 08 0.1 00 00 0.0 100.0 984 89.7 665372179 48 18
Fy 725 155 13 01 0000 00 00 1000 982 183 15 0.2 00 00 00 100.0100.0 99.9 98.2 839 50.7 148 1.8
Case 5 Case 10 Case 15
0, 10 5 0 0 00 0 0 10 10 5 0 0 0 ©0 0 14 6 4 4 2 0 0 0
Gollob 1000 950328 51 0300 00 00 10001000 928 243 1.7 02 00 00 100.0 1000 92.7 495 62 03 00 00
Fons 1000 499 20 02 0000 00 00 10001000 545 1.8 0.1 00 00 00 1000 914 388 61 01 00 00 00
Fg 1000 336 22 03 0000 0.0 00 1000 999 343 22 02 0.0 00 00 1000 967 495 84 04 0.1 00 00

F test was very robust. The most extreme error rate for
Fy (10.8% for first term) occurred for Distribution V.

Simulation results for the case 6, =14, 6,=6,
0, =6, =4, and 05 =2 (= Case 15; chosen for simlarity
to the real data set analysed by Cornelius 1993) are
summarized in Table 4. Under normality and homo-
scedasticity (Distribution I) Gollob’s test for multiplica-
tive terms two to five was superior in power, followed by
the F test (see Case 15in Table 2). Gollob’s test was also
most powerful in all other cases (Distributions II to
XVI). Under heteroscedasticity (Distributions II to V),
with errors from a uniform distribution (Distribution
V1), and with errors from a Cauchy distribution (Dis-
tribution VII), the F tests had better power than the
F test, while the F;y tests were more conservative with
the other non-normal distributions (Distributions VIII
to XVI). The power to detect the fifth multiplicative term
was low for all tests and cases, while the empirical error
rates for 6, = 0, = 83 = 0 were within acceptable limits.
The only exception was Gollob’s test with Distribution
VI, were the null hypothesis for the sixth term was falsely
rejected in 133 of the 1 000 simulation runs.

To further investigate how power and robustness
depend on the number of non-null true 6, values,
the simulation was run for errors distributed as a mixture
of two normal populations, ie, as 099N (0,1)+
0.01N(10,1) (Distribution XVI in Table 1). The results
for cases (8, 6,, 6,) equal to (10,0, 0) (Case 3), (10, 10, 0)
(Case 6),and (10, 10, 5)(Case 10) are shown in Table 5. In
Case 3, Gollob’s test and the F;p tests had a risk of
66.6% and 14.1%, respectively, of falsely declaring the
first zero term (6,) significant, while the risk with F, was
only 3.1%. In Case 6, the Type-I error rates for the first
zero term (6,) were 49.2% and 9% for Gollob’s test and
the F sy tests, whereas in Case 10, the rates for the first
zero term (6,) were 16.6% and 1.4%, respectively. So
while these two tests were very liberal with regard to
the first multiplicative term, they tended to be less
liberal for terms two and three. In Cases 6 and 10
the Fy test was conservative, giving error rates for the
first zero term of 2.7% and 0.3%, respectively. In all
three cases the Fy test had less power than Gollob’s test
and the F .y tests to detect the non-zero multiplicative
terms.
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Table 3 Percentage rejection of null hypotheses in 1000 simulated tests (o = 0.05) of multiplicative interaction terms in 20 cultivars by nine
environments tables with four replications. All true singular values equal to zero (Case 1). Distributions II to XV1

Test Multiplicative term (6,) no.
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Distribution IT* Distribution VII Distribution XII

Gollob 731 209 19 01 00 00 00 00 994 274 07 00 00 00 00 00 652 165 1.6 01 00 00 00 00

Fom 102 06 01 00 00 00 00 00 942 65 00 00 0.0 00 00 00 64 01 00 00 00 00 00 0.0

Fy 59 03 01 00 00 00 00 00 1.6 00 00 00 00 00 00 00 50 02 01 00 00 00 00 00
Distribution III Distribution VIII Distribution XIIT

Gollob 848 33.1 3.1 00 00 0.0 00 00 737 200 20 00 00 00 00 00 683 172 1.6 00 00 0.0 0.0 00

Fom 259 15 00 00 00 00 00 00 109 02 00 00 00 00 00 00 75 02 00 00 00 00 00 00

Fr 67 03 0.1 00 00 0.0 00 00 57 0.0 00 00 0.0 00 00 0.0 55 01 00 00 00 00 00 00
Distribution IV Distribution IX Distribution XIV

Gollob 741 16 14 01 00 00 00 00 776 196 1.1 0.0 00 00 00 00 705 212 22 00 00 00 00 00

Fom 154 02 00 00 00 00 00 00 145 02 00 00 00 00 00 00 74 03 00 00 00 00 00 00

Fy 63 00 00 00 00 0.0 00 00 43 00 00 0.0 00 00 00 00 60 03 00 00 00 00 00 00
Distribution V Distribution X Distribution XV

Gollob 938 3.7 02 00 00 00 00 00 663 178 1.7 01 01 00 00 00 794 200 1.6 00 00 00 00 00

Fap, 638 00 00 00 00 00 00 00 62 02 01 00 00 00 00 00 161 04 00 00 00 00 00 00

Fy 108 0.0 00 00 00 00 00 00 51 02 01 00 00 00 00 00 46 0.2 00 00 00 00 00 00
Distribution VI Distribution XI Distribution XVI

Gollob 63.5 164 20 02 00 00 00 00 736 187 18 0.1 00 00 00 00 867 261 1.5 00 00 00 00 00

Fom 46 03 00 00 00 00 00 00 101 01 00 00 00 00 00 00 227 05 01 00 00 00 00 0.0

Fx 4% 06 01 00 00 00 00 00 49 03 00 00 00 00 00 00 50 01 0.0 00 00 00 0.0 00

2 See Table 1 for description of Distributions IT to XVI. Note that Distribution I is covered by Table 2

Table 4 Percentage rejection of null hypotheses in 1000 simulated tests (o = 0.05) of multiplicative interaction terms in 20 cultivars by nine
environments tables with four replications. 6, = 14, 0, =6, 0, = 8, =4, 85 = 2 (Cae 15). Distributions II to XVII

Test Multiplicative term (6,) no.
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Distribution IT* Distribution VII Distribution XII

Gollob 1000 99.8 833 288 24 0.0 0.0 00 99.5 278 0.5 0.0 0.0 0.0 0.0 0.0 1000 99.8 89.7 43.7 48 0.1 0.0 0.0

Fom 100.0 879 255 22 01 0.0 0000 948 6.5 00 0.0 0.0 0.0 0.00.0 100.0 88.033.0 5201 0.0 0.0 0.0

Fg 1000 871 257 26 02 000000 1.7 00 00 0.0 0.0 0.0 0000 1000 924 43.1 6103 0.0 0.0 0.0
Distribution I11 Distribution VIII Distribution XIII

Gollob 1000 100.0 96.8 59.2 103 0.3 0.0 0.0 100.099.9 925 475 7.0 02 0.0 00 100.0 85.8 36.7 49 0.3 0.0 0.0 0.0

Fony 100.0 100.0 66.0 145 0.5 0.0 0.0 0.0 1000918 423 63 0500 0000 985 227 20 0000 00 00 0.0

? 100.0 1000 628 9.8 0.5 0.0 0.0 0.0 100.0949 490 7.6 03 0.0 0.000 959 251 33 0200 00 00 0.0

Distribution IV Distribution IX Distribution XIV

Gollob 100.0 100.0 95.8 51.8 55 0.1 0.0 0.0 100.0 100.0 100.0 99.9 70.1 7.1 1.0 0.0 100.0 95.9 50.0 84 0.6 0.0 0.0 0.0

Fom 100.0 100.0 563 104 03 0.0 0.0 0.0 100.0100.0 100.0 98.7 36.9 0.9 0.0 0.0 1000 429 4.0 03 0.0 0.0 0.0 0.0

Fp 100.0 100.0 546 7.6 04 0.0 0.0 0.0 100.0 100.0 100.0 96.3 254 09 0.0 0.0 100.0 420 53 0200 0.0 0.0 0.0
Distribution V Distribution X Distribution XV

Gollob 100.0 100.0 803 231 04 0.0 0.0 0.0 100.0100.0 93.1 482 6.0 0.3 0.0 0.0 100.0 99.9 92.1 51.0 7.2 0.1 0.0 0.0

Fems 100.0 937 255 23 00 00 00 0.0 1000 913 397 6.1 0.0 0.0 0000 1000 922438 6.00.0 0.0 00 0.0

Fp 100.0 856 129 07 0.0 0.0 0.0 0.0 1000 96.6 494 78 04 0.0 0.00.0 100.0 950472 7.70.0 00 0.0 0.0
Distribution VI Distribution XI Distribution XVI

Gollob 100.0 100.0 100.0 100.0 100.0 13.3 0.6 0.0 100.099.9 929 469 7.7 0.0 0.0 0.0 1009 97.0 62.6 145 0.7 0.0 0.0 0.0

Faus 100.0 100.0 100.0 100.0 979 23 0.1 0.0 1000915 41.1 59 02 000000 999 600 9.7 1.00.0 0.0 0.0 0.0

Fy 100.0 100.0 100.0 100.0 920 3.1 0.3 0.0 1000958 478 7.6 04 0.0 0000 100.0 524 82 0.8 00 00 0.0 0.0
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Table S Percentage of rejections of null hypotheses in 1000
simulated tests (¢ = 0.05) of multiplicative interactions terms in 20
cultivars by nine environments tables with four replications and three
sets of true 6, values (Cases 3, 6, and 10 in Cornelius 1993). Errors
distributed as the normal mixture 0.99 N (0,1) 4+ 0.01 N (10, 1} (Dis-

Table 6 Percentage of selections of multiplicative interaction terms
in 20 cultivars by nine environments tables with four replications
(three for model building, one for validation) in 1000 simulated cross
validations (ten runs per cross validation)

tribution XVI) Test Multiplicative term (6,) no.
Test Multiplicative term (6,) no. 1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 Case 1
Case 3 0, 0 0 0 0 0 0 0 0
0, 1.0 00 0.0 00 00 00 00 00 I 4.8 1.5 0.3 02 02 01 01 01
Gollob 999 666 120 05 00 00 00 00 1° 6.4 15 04 02 01 01 01 01
Fom 940 142 0.3 00 00 00 00 00 V 8.9 0.2 0.2 61 01 00 00 00
Fg 713 31 0.0 00 00 00 00 00 VI 43 25 1.6 .1 1.0 10 09 07
X1V 3.8 1.0 04 03 02 01 00 00
Case 6 XV 2.8 0.6 0.2 02 01 01 01 o1
XVI 3.0 1.1 0.5 61 01 00 00 00
0, 10 10 0.0 00 00 00 00 00
Gollob 1000 995 492 67 01 00 00 00 Case 15
Fom 99.1 827 9.0 04 00 00 00 00
Fg 98.1 530 27 01 00 00 00 00 8 14 6 4 4 2 0 0 0
Case 10 I 995 409 184 92 45 23 10 07
I 995 398 176 101 63 31 10 05
o, 1.0 10 0.5 00 00 00 00 00 V 946 460 250 127 46 24 12 06
Gollob 1000 996 709 166 09 00 00 00 VI 4.4 2.5 1.7 13 1.0 09 06 05
Fou 992 851 200 14 01 00 00 00 XV 990 416 198 110 46 22 12 03
Fy 995 710 103 03 00 00 00 00 XV 992 376 184 108 60 30 16 08
XVI 80.7 172 8.5 44 23 12 03 02

The robustness of cross validation (Gauch and Zobel
1988) was investigated for Cases 1 and 15 and for
Distributions L I1I, V, VIIL, XTIV, XV, and XVI. Three of
four replications were used for model building, while
one replicate was retained for validation. Cross valida-
tion was based on the root mean squared predictive
difference (RMSPD) between the model and validation
data (Gauch and Zobel 1988), averaged across ten ran-
dom data splittings. The model with the smallest
RMSPD was taken to be the best predictive model.
Simulation results are presented in Table 6. The
results suggest that cross validation is robust to non-
normality and to heteroscedasticity, when in fact there is
no interaction (Case 1). As for Case 15, cross validation
tended to detect less terms than the significance tests.
Heteroscedasticity (Distributions III and V) had no
serious effect on model selection, while the non-normal
distributions decreased power compared to the normal
case.

Discussion

The Fy test is simple because it is based on a straight-
forward F-ratio (no tables or computation of constants
needed) and the degrees of freedom are easily assigned
following Gollob’s rules. Furthermore, the Fy test for
the first multiplicative term is very robust to non-
normality and heteroscedasticity, which is not true of
the F 5y tests. This suggests that it may be worthwhile to
generally use the Fy test in place of the Fgy tests (and

* See Table 1 for description of Distributions I, TII, V, VII, XIV, XV,
and XVI

Gollob’s test). If the F;; tests are to be used, preliminary
tests for the homogeneity of variances and for normality
are in order. The simulation results indicate that the
robustness of the F test must often be paid for by a loss
in power compared to the F; tests. It is noted, however,
that with an increasing number of ‘true’ non-zero terms,
the risk of falsely declaring a term significant decreased
to acceptable limits with any of the tests investigated,
even if the assumptions of normality and homoscedas-
ticity are violated.

The simulations presented in this paper were done
only for 9 x 20 tables. It is conjectured (and confirmed
by spot checks), however, that results for tables of other
dimension are similar with regard to robustness. This
conjecture needs to be checked by more extensive simu-
lations in the future.

A simulation test similar to the one given by Cornel-
ius (1993) could probably be devised under hetero-
scedasticity assumptions, though the development
would not be straight forward (Cornelius, personal com-
munication). Also, such a test would probably still be
sensitive to departures from normality.

In this paper, we were mainly concerned with tests for
determining how many of the multiplicative terms 6, are
non-null. As pointed out by Cornelius (1993), this is not
the same issue as finding the optimal number of terms
for a predictive model, which is usually done by cross
validation. Often, a good predictive model has fewer
terms than are judged significant by a statistical test.



Cornelius (1993) has demonstrated, however, that in
some cases choosing the number of significant terms
may be a better model-building strategy for prediction.
Our preliminary simulations (Table 6) indicate that,
although cross validation is non-parameteric in that it is
not based on the normality assumption, the expected
number of selected terms is not necessarily independent
of the error distribution. A thorough comparison of the
two model-building strategies would be worthwhile, but
is beyond the scope of this paper. Because of workload
limitations, we have used only ten iterations per cross
validation. For an in-depth analysis, the number of
iterations would probably have to be increased. Besides
the number of selected multiplicative terms, a useful
criterion would the interaction mean squared error
(IMSE) suggested by Cornelius (1993).

Acknowledgements I thank Paul L. Cornelius (University of Ken-
tucky) for several helpful comments, particularly for bringing the Fy
test to my attention.
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